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On the Lie symmetry algebra of a general ordinary
differential equation
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Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK

Received 26 February 1998

Abstract. We give a description of the Lie symmetry algebra of a general ordinary differential
equation which clarifies certain issues in its practical use. In particular we present examples of
symmetry algebras for well known equations which illustrate features of this algebra.

1. Introduction

In a recent publication [3] a complete description of the Lie symmetry algebra of a linear
ordinary differential equation (ODE) with coefficients in a specified differential base field
was given and this paper will generalize the result to an equation defined by an element of a
differential ring in a single indeterminate over the base field and hence to nonlinear ODEs.
A somewhat different description of the linear case is given in [17]. The generalization
is straightforward in that the algebra is just the ring of derivations of a function space in
certain invariants as, it will be shown, it is in the linear case.

The Lie symmetries of a differential equation are of immense practical help in
understanding the structure of such an equation and in obtaining families of particular
integrals. What we are aiming at is an abstract framework which might be compared with
the differential Galois theory of a linear equation. Indeed, in the case of linear equations
this comparison ought to be a correspondence. We do not therefore advance a practical
tool in obtaining the symmetry algebra, which is in any case tantamount to being able to
solve the equation completely, but to construct an object whose structure is transparent.
By choosing certain classes of object we pin down classes of differential equation whose
structure then becomes equally transparent.

In this paper we give the definition of the (non-characteristic) Lie symmetry algebra
and present the main theorem, which encompasses the earlier result, before giving what we
hope are interesting examples of its application. These are to do with subalgebras whose
coefficients belong to subfields of the full field of invariants.

It must be noted that the non-characteristic Lie algebra is not exactly the same as the
Lie symmetry algebra as defined in, say, [13] and is so-called because certain characteristic
symmetries have been factored out of the latter. Further, the invariants we use are invariants
of the characteristic symmetry. In addition, what we call the Lie symmetry algebra here is
more broadly defined than in [13] where onlypoint symmetries are intended. Our use is in
accord with others [7, 16]. In defence of the broader definition we point out that when written
in first-order system form (so that each derivative is effectively a new dependent variable) an
ODE has ‘point’ symmetries which transform derivatives in ways which are not necessarily
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prologations of point transformations of the original dependent and independent variables.
Such symmetries are often called generalized, dynamical or Lie–Bäcklund symmetries. The
value of this point of view has been amply demonstrated in [9], where examples are given of
families of second-order ODEs possessing no point symmetries but integrable by quadrature
by virtue of dynamical symmetries. In [8] the authors make the point that, for second-order
differential equations, integrability by quadrature is equivalent to the presence of a pair of
dynamical symmetries.

2. Definitions and basic results

In this section we present the foundations of a coordinate-free treatment of generalized,
continuous symmetries for differential systems of finite rank. The classical notion of Lie
point symmetry is extended to give a larger algebra of vector fields (derivations) preserving
the differential system (ideal) under Lie transport. We present results on reduction of order
proved in [3] and use them to give a new result on solvability (theorem 9).

Let k be a differential field of characteristic zero with derivation∂x and field of constants
k0. k[y] is the ring of polynomials overk in the indeterminatesy0, y1, . . . , yN with
commuting derivations∂y0, ∂y1, . . . , ∂yN . k[y] is an integral domain with fraction field
denotedk(y) to which ∂x, ∂y0, . . . , ∂yN extend in the obvious way. For thek(y) valued
k0-linear derivations onk(y) we will write Der(k(y)). These arek(y) linear combinations
of the above derivations.

We shall also want to adjoin to a general differential field,J say, new functionsj1, j2, . . .

defined by differential equations whose defining function belongs toK, a differential field
extension ofk(y). In this way we get differential fieldsJ 〈j1〉, J 〈j1, j2〉 etc. The Picard–
Vessiot extensions [12] are examples of this.

By
∧
(k(y)) we denote thek(y) valued one-forms dual to Der(k(y)). A basis is given by

the set{dx, dy1, dy2, . . . ,dyN } where dxb∂x = 1, dxb∂yi = 0 for all i and dyib∂yj = δij . (We
useb for the pairing between a vector space and its dual.) The exterior differential algebra
will be denoted

∧
(k(y)) = ⊕N0

∧p
(k(y)) with da = ∂xa dx + ∂y0a dy0+ ∂y1a dy1+ · · · for

a ∈ k(y).
An ideal of

∧
(k(y)) will be an algebra ideal which is also closed under the exterior

derivative d. So ifω andη are elements of the algebra and the ideal respectively, bothω∧η
and dη belong to the ideal. We use the notationA G B whenA is an ideal ofB. We will
assume, because of the applications we have in mind, that our ideals are finitely generated
by one-forms. Although the definition of symmetry algebra given below generalizes to
partial differential equations, this restriction excludes most of them.

Let K be a differential field extension ofk(y). We consider forms,
∧
(K), overK and

the k0-linear derivations, Der(K) of K. We have the following.

Definition 1. TheK-Lie symmetry algebra,L2(K), of an ideal2 ⊂∧(K) is thek0-algebra
of vector fieldsX ∈ Der(K) such thatLX2 ⊆ 2.

The definition uses the Lie derivative with respect toX, namely,LXθ = d(Xbθ) + Xb dθ
for any formθ . The ideal is preserved by Lie transport along symmetries and hence integral
manifolds are transported into integral manifolds. This is the natural dynamical or geometric
generalization of Lie point symmetry.

Definition 2. TheK-characteristic algebra,X2(K) of 2 is the k0-algebra of vector fields
X ∈ Der(K) such thatXb2 ⊂ 2.

It is easily verified that, ask0-algebras,X2 G L2.
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Definition 3. The K-non-characteristic symmetry algebra,S2(K), of 2 is the k0-algebra
L2(K)/X2(K).
In general this algebra will be infinite dimensional overk0 but we will see that it is
finite dimensionalas a vector space, over a larger field. In factoring out the characteristic
symmetries we are removing ‘trivial’ symmetries which simply transport each individual
integral manifold into itself.

Definition 4. For K any field extension ofk(y), theK-invariants of2, I2(K) are those
elementsa ∈ K such thatXbda = 0 for all X ∈ X2(K).

From now on we will drop the argument fromS2 etc except where we wish to emphasize
the particular field in question.

In order to discuss symmetry reduction of2, and hence the reduction in order of the
differential system, we need to understand the relations between the full symmetry of2

and the symmetries of ideals contained within2. The situation here is not as neat as one
might wish. Nevertheless the following results lead up to the generalization toS2(K) of a
well known result, theorem 9, a sufficient condition for ‘integrability by quadrature’ up a
tower of differential field inclusions. In what followsK is an extension ofk(y).

Lemma 5.Assume thatS2 is finite-dimensional as aK-vector space. IfN is a subalgebra
of S2, also of finite dimension as aK-vector space, then there exists aK-algebra ideal
8 G2 with non-characteristic symmetry algebraS8 containing a subalgebra isomorphic to
I(N )/N , I(N ) being the idealizer ofN in Der(K).

The ideal8 in this theorem is generated overK by one-forms in2 killed by elements
of N . In other words, it is the ideal of2 for which N is characteristic. Recall that the
idealizer ofN is the largest subalgebra of Der(K) containingN as an ideal.

Definition 6. An ideal is simple if it is generated by one-forms and itsrank is r if it is
generated byr such forms linearly independent overK.

Lemma 7.An ideal,2, of rank one overK with a non-characteristic symmetry is generated
by a closed one-form.

Lemma 8.If the single vector fields ∈ S2 generates a subalgebraN then in the context of
lemma 5,2/8 has a closed generator.

These three lemmas are proved in [3].

Theorem 9.Let 2 have rankn over K and S2 dimensionn as a vector space overK.
Suppose further thatS2 is solvable with derived series of lengthn. Then 2 has a
decomposition of lengthn.

Proof. Let S2 decompose thus:

S2 = Sn F Sn−1 F · · · F S1 F S0 = {0}. (1)

For s1 ∈ S1 let 81 be generated by one-formsθ2, θ3, . . . , θn such thats1bθi = 0 for
i = 2, . . . , n. Chooseθ1 /∈ 81. Then θ ′1 = (s1bθ1)

−1θ1 is closed modulo81. Further,
because the idealizer ofS1 containsS2 we have thatS81 ⊇ S2/S1 6= {0}. Now choose
s2 ∈ S2\S1 and let82 be generated by those one-forms, say,θ3, . . . , θn in 81 with s2bθi = 0
for i = 3, . . . , n. Thenθ ′2 = (s2bθ2)

−1θ2 is closed modulo82. This process continues to
generate a chain of the form

{0} = 8n G8n−1 G · · · G81 G80 = 2. (2)
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In this case we can solve the differential equation by successive quadratures up a tower
of fields in the following manner. The theorem above has reduced the closure relations in
the basis{θ1, . . . , θn} to upper-triangular form. Consequentlyθn is closed and we may write
θn = dfn, at least locally, for somefn in a large enough extension ofk(y). Restriction to the
submanifoldfn constant then implies that the restricted formθn−1 is closed, soθn−1 = dfn−1

wherefn−1 is defined on the submanifoldfn constant and lives in a further extension of
k(y). Restricting tofn andfn−1 both constant we repeat the procedure and iterating finally
obtaining a set ofn relations on the variablesx, y, y1, . . . , yn−1 and hence a (local) solution
curve depending on the choice of constants. �

3. The main result

Let U be an open subset ofCn+1 and letA(U) be the differential ring of functions analytic
on U . As a commutative domainA has a field of fractions to which the derivations on
A extend by the quotient rule. We call this theanalytic field F(U). Suppose that2
is anF(U)-algebra ideal of rankn everywhere onU . By the Frobenius theorem there
exist n functions, I1, I2, . . . , In ∈ F(U ′), for a certain open subsetU ′ ⊆ U , such that
F(U ′)〈θ1, . . . , θn〉 = F(U ′)〈dI1, dI2, . . . ,dIn〉. The Ii are analytic onU ′ and the dIi are
linearly independent overF(U ′). Consequently we can solve fory0, . . . , yn−1 in terms of
x, I1, . . . , In,

y0 = 80(x, I1, . . . , In)
...

yn−1 = 8n−1(x, I1, . . . , In)

where the8i are analytic on some open subsetW of Cn+1. This gives us an invertible,
analytic map8 : W → U ′. 8 also induces a map fromF(U ′) to F(W). Correspondingly
the invertible tangent map, d8 maps derivations onF(W)〈dI1, . . . ,dIn〉 to derivations
on F(U ′)〈θ1, . . . , θn〉. The characteristic derivation,X, on F(U ′)〈θ1, . . . , θn〉 satisfies
Xcθi = 0 for i = 1, . . . , n. andd8−1(X) must satisfy d8−1(X)cdIi = 0 for i = 1, . . . , n.
The latter has to be a multiple of∂x . Forming the factor algebraL2/X2 in each case we
see thatS2 is mapped into the derivations of quotients of functions inI1, . . . , In only, on
W .

Thus we state the following theorem.

Theorem 10.If 2 is anF(U) ideal of maximal rank everywhere onU then there is an open
U ′ ⊆ U whereS2(F(U ′)) is the derivations of an analytic field of invariants.

4. Some illustrations

We illustrate the above with a range of examples.

4.1. Linear first-order ODE

It is often remarked that the symmetries in this instance form an infinite-dimensional Lie
algebra which we describe below. In fact in the general linear case (see below) the
non-characteristic Lie algebra is infinite-dimensional over its field of constants but finitely
generated over the invariants by point symmetries.
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Consider the first-order, linear equation,y1 − ay0 = 0, with a ∈ k, and lety0 = α be
any non-trivial solution.k〈α〉 = k1 is the smallest extension containingα. By a formal
calculation it is easy to check that the general form of an element ofS2 is y0F(y0/α)∂y0.
Either k = k1 or k ⊂ k1 andk1 is transcendental overk by lemma 3.9 of [12]. In the latter
caseS2(k(y0)) is one-dimensional overk0 and generated byy0∂y0.

If we take k1, the Liouville extension ofk defined by the first-order, linear equation,
we have an infinite set of symmetries. They can be expanded as Laurent series iny0 whose
terms arek0-linear combinations ofsi = yi+1α−i∂y0 for i ∈ Z. Thesesi show thatS2 is,
in this case, thek0-algebra with Lie product,

[si, sj ] = (j − i)si+j . (3)

4.2. General linear ODE

Let z1, z2, . . . , zn be ak0-linearly independent set of solutions to the given linear ODE of
order n. We takek1 to be the Picard–Vessiot extension ofk defined by these functions.
Then then elements ofk1(y) defined by the determinants

Ii =

∣∣∣∣∣∣∣∣
z1 . . . zi−1 y0 zi+1 . . . zn
z
(1)
1 . . . z

(1)
i−1 y1 z

(1)
i+1 . . . z(1)n

...
...

...
...

...

z
(n−1)
1 . . . z

(n−1)
i−1 yn−1 z

(n−1)
i+1 . . . z(n−1)

n

∣∣∣∣∣∣∣∣ (4)

are invariants ofX2, that is, dIi ∈ 2 and S2(k1(y)) is the k0-algebra of derivations
of the field I2 = k0(I1, I2, . . . , In), [3]. This is a particular case of theorem 10. It is
straightforward to verify that thek1(y)-derivations ofI2 areI2 generated by then vector
fieldsXi = zi∂y0 + z(1)i ∂y1 + · · · + z(n−1)

i ∂yn−1.
An interesting observation is the relation between symmetry and factorization of

linear operators. Suppose we are able to factorize annth-order, linear operatorL =
(∂ − a1)(∂ − a2) . . . (∂ − an) over a differential fieldK. So ai ∈ K for i = 1, . . . , n.
The corresponding ideal2 is generated by one-formsθi = dui−1− (ui +an+1−iui−1) dx for
i = 1, . . . , n−1 andθn = dun−1− a1un−1 dx. The closure relations of these basis elements
have triangular form:

d


θ1

θ2
...

θn

 =

an dx dx 0

0 an−1 dx dx
. . .

a2 dx dx
0 a1 dx

 ∧

θ1

θ2
...

θn

 . (5)

By extendingK if necessary we can reduce this to strictly upper-triangular form using, as
integrating factors, the solutions to the equationsu′ + apu = 0. Consequently we have a
chain of differential ideals, each describing a linear ODE:

21 F22 F · · · F2n−1 F2n = 2.
2i arises as a symmetry reduction of2i+1.

Suppose, in general, thatD is a linear differential operator over a fieldk which factorizes,
D = PQ, into linear differential operators over a fieldk′. Then we have a corresponding
sequence of ideals:

2P → 2D → 2D/2P ∼ 2Q.

The factor ideal is equivalent to2Q in the sense that on regular solution manifolds of2P

it restricts to a linear equation with an inhomogeneous term determined by the solution
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manifold chosen. If we take a symmetry reduction of thenth order operatorD by one of
theXi defined above thenP is an operator of ordern− 1 and2Q represents a first-order,
linear equation of the formy1− αy0 = f for f ∈ kerP .

4.3. Nonlinear first-order ODE

In this and subsequent sections where examples are drawn from equations of order of no
more than two it is convenient to usey instead ofy0 andp instead ofy1. We use primes
for x-derivatives.

We will illustrate this case using the general Ricatti equation because, for an explicit
description of the symmetry algebra, one needs some sort of description of the solution
space. The fact that the Ricatti equation is ‘linearizable’ to a second-order, linear equation,
for which we know the symmetry algebra, is nota priori useful. We shall study the
relationship between the two symmetry algebras in a moment.

Given any three projectively independent solutionsu1, u2 andu3 to the Riccati equation,

y ′ = y2+ a(x) (6)

the invariants ink〈u1, u2, u3〉(y) are all rational functions of the cross ratio

z = (y − u1)(u3− u2)

(u3− u1)(y − u2)
.

It is easy to check that any such function is killed by the characteristic field∂x + (y2+a)∂y
and, by solving fory in terms ofz that any functionF(x, z) is invariant only if independent
of x. So I(2) = k0(z). The general element of the non-characteristic symmetry algebra
is thenh(z)( ∂z

∂y
)−1∂y , that is, any derivation of the field of invariants. (For the appropriate

invariant,z, this formula applies to any first-order equation.)
The existence of a symmetry implies the solution of the Ricatti equation by quadrature.

If we use the symmetryv = (y−u1)(y−u2)

u1−u2
∂y with θ = dy − (y2 + a) dx it follows that the

one-form

θ

vcθ =
dy − u′1 dx

y − u1
− dy − u′2 dx

y − u2
+ (u2− u1) dx

is exact. This does not contradict the classical result on the impossibility of quadrature
for the Ricatti equation because the classical result assumes only algebraic operations over
k(x, y). Indeed, the above is equivalent to the result that the Ricatti equation is integrable
by one quadrature, the rightmost term above, when a pair of particular solutions is known.

To understand the relationship with the symmetry algebra of the corresponding second-
order, linear equation we must prolong2 = k(y)〈dy − (y2 + a) dx〉 to 2̃ = k̃(y, φ)〈dy −
(y2+ a) dx, dφ + yφ dx〉 which describes the second-order equation

φ′′ + aφ = 0.

We have to relate the derivations ofk0(z) to those ofk0(I1, I2) where I1 and I2 are as
described in (4). In terms ofy andφ and a pair of linearly independent solutionsφ1 and
φ2 to the linear, second-order equation, the invariantsI1 andI2 are given by

I1 = −φ(φ′2+ yφ2)

and

I2 = φ(φ′1+ yφ1).
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The corresponding derivations are

X1 = φ1∂φ − φ
′
1+ yφ1

φ
∂y

and

X2 = φ2∂φ − φ
′
2+ yφ2

φ
∂y.

Now defineu1 andu2, solutions to the Ricatti equation, byφ′1 = −u1φ1 andφ′2 = −u2φ2.
A third solution to the Ricatti equation is built from these:

y3 = −φ
′
1+ cφ′2
φ1+ cφ2

c being an arbitrary (even infinite) constant. Rewriting the invariantz in terms ofφ1 and
φ2 gives

z = −1

c

φ′1+ yφ1

φ′2+ yφ2
.

Up to a constant this is the ratio ofI1 to I2 and soI21 = k0(I1/I2) ⊂ k0(I1, I2) = I2. The
relationship between the non-characteristic symmetry algebras thus reduces to the study of
the algebras of derivations of a field and a subfield. Generally speaking a derivation of the
field is not necessarily a derivation of the subfield, orvice versa. In this case the subfield
is fixed by the special derivationI1X1 + I2X2 which is to be expected since this is the
symmetry of any linear, second-order equation and the one by which2̃ is reduced to2.
I2 is thus playing a role anlagous to an intermediate fixed field in the Galois theory.

4.4. Solvable structures

A solvable structure, introduced in [6] and written in the current form in [11], is a chain of
differential ideals

0= 20 F21 F22 F · · · F2n−1 F2n = 2
with a special choice of one-formsθi ∈ 2i\2i−1 such that dθi ∈ 2i−1. The structure of
the factorized, linear equation is a simple case. With each ideal2i there is associated a
symmetry algebraL2i and a non-characteristic symmetry algebraS2i . As we have seen
there is no generic relationship between the algebras of theith andi−1th ideals. Although
the inclusion2i−1 ↪→ 2i can be regarded as coming from a symmetry reduction for some
symmetry inS2i , this need not be a symmetry ofS2i+1. Examples of solvable structures
will be found in [11]. They account for equations which appear to acquire extra symmetries
under reduction. Examples have been studied in recent literature [1, 2] following an original
example from Olver [13]. They have also been discussed in [11] where it is shown that the
phenomenon of ‘hidden symmetry’ is due to such an extended notion of solvability.

4.5. Some nonlinear ODEs

The value of the above approach to the symmetry theory of ODEs is that it allows us,
in principle, to display clearly the relationship between the existence of integrals within
intermediate field extensions and non-characteristic symmetries within such extensions.

It is appropriate to start with the first-order, inhomogeneous equation
1
2z
′ + az+ b = 0 (7)



6612 C Athorne

wherea andb belong to a differential fieldk. The general solution requires two Liouville
extensions [12]. Thus we can extend the ideal generated byθ = dz + 2(az + b) dx,
k(z)〈dz+2(az+ b) dx〉 G k(z)〈dx, dz〉, to k〈η1〉(z)〈d(z/η1)+2b/η1〉 G k〈η1〉(z)〈dx, dz〉 by a
Liouville extension using any solutionη1 to the homogeneous equationη′ + 2aη = 0. The
one-form generating the latter ideal is closed but only exact ifb/η2 has an integral ink〈η1〉
so, in general, we further extend to the generalized Liouville extensionk〈η1, ζ1〉 whereζ1

is any nonconstant solution to the second-order equationζ ′′ − (b′/b + 2a)ζ ′ = 0.
Alternatively, let z1 and z2 be any linearly independent solutions of (7). (Note that

because the equation is inhomogeneous, any pair of distinct solutions is linearly independent
overC.) We may take, for instance,z1 = ζ1η1 + η1 andz2 = ζ1η1 − η1. Then the general
solution isz = λz1+ (1−λ)z2 and an invariant can be taken to beI = (z1− z2)

−1(z− z2).
Any other choice forz1 and z2 induces an affine transformation ofI . Consequently
v = (z1 − z2)∂z = 2η1∂z is a non-characteristic symmetry and the formθ/(vbθ) is the
closed form above.

The Bernoulli equation

y ′ + ay + b/y = 0 (8)

reduces to (7) under the quadratic mapz = y2 and so an invariant is

I = (y − y2)(y + y2)

(y1− y2)(y1+ y2)
.

An associated derivation isv = (y2
1 − y2

2)/y∂y or, up to a constant,v = η1/y∂y for the
reasons given above. So the Bernoulli equation has a symmetry with coefficients in a
Liouville extension ofk and integration proceeds as above.

For a more general Bernoulli equation

y ′ + ay + byn+1 = 0 (9)

one uses the standard reduction to inhomogeneous linear form to obtain the invariant

I = yn1(y
n
2 − yn)

yn(yn2 − yn1)
and the corresponding derivations generated by

v = −y
n
2 − yn1
nyn1y

n
2

yn+1∂y.

Herey1 andy2 are solutions of (9).v generates a Lie point symmetry of (9). In the case
that a is constant (9) is a reduction of the second-order equation,

y ′′ = y−1y ′2+ ng(x)yny ′ + g′(x)yn+1

by the symmetryy−1∂y + (y−2p+ ng(x)yn−1)∂p which is not a Lie point symmetry. In [8]
it is shown that there are no point symmetries for generalg(x).

In the case thatb is constant solutions of (8) are also solutions of the well known Pinney
equation,

y ′′ + αy + β/y3 = 0 (10)

whereα = a′ − a2 andβ = b2. The ideal representing (8) can be seen to be the image of
that representing (10):

〈dy + (ay + b/y) dx〉 = 8∗〈dy − p dx, dp + (αy + β/y3) dx〉
under the restriction,8, to the submanifoldp + ay + b/y = 0 of C3.
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If y1 andy2 are solutions of (10) then the following are easily shown to be invariants
belonging to the fieldk0〈y1, y2〉(y, p):

I2 = (yy ′1− py1)
2− βy2

1/y
2− βy2/y2

1

I1 = (yy ′2− py2)
2− βy2

2/y
2− βy2/y2

2.

Elimination of p gives the general solution to (10) in an algebraic extension of the
field k0 < y1, y2 >. On the other hand we can also find invariants in the field
ko < φ1, φ2 > (y, p) whereφ1 andφ2 are solutions to the linear equation

φ′′ + αφ = 0

satisfying the Wronskian relationφ′1φ2− φ1φ
′
2 = 1, namely,

Jij = (yφ′i − pφi)(yφ′j − pφj )− βφiφj/y2

for i, j = 1, 2. These invariants are not algebraically independent. In factJ11J22−J12J21 =
−β. The general solution in a quadratic algebraic extension ofk0〈φ1, φ2〉 gives the familiar
expression [14] for the solution. Consequentlyk0〈φ1, φ2〉 is at most a subfield ofk0〈y1, y2〉.

As a result the Pinney equation has non-characteristic symmetries,

vi = 2(pφi − yφ′i )(φi∂y + φ′i∂p)− 2βφ2
i /y

3∂p

for i = 1, 2 with coefficients ink〈φ1, φ2〉(y, p) and

ṽi = 2(pyi − yy ′i )(yi∂y + y ′i∂p)− 2β(y2
i /y

3− y/y2
i )∂p

for i = 1, 2 with coefficients ink〈y1, y2〉(y, p).
The classical Ermakov systems [15] have the form,

u′′ + αu+ u−2v−1f (v/u) = 0

v′′ + αv + v−2u−1g(u/v) = 0.
(11)

These systems admit exact but implicit linearization [5] which, as in the case of the Pinney
equation, makes use of the field extensionk0〈φ1, φ2〉 where φ′′1 + αφ1 = 0. Invariants
of the kind we seek were first constructed in an unpublished paper of Gordon [10] and
subsequently by using the linearization [4]. Using du− p dx and dv− q dx to describe the
contact forms, they are of the form,

Jij = (φiq − φiv)Fj (ρ)+ v−1(vp − uq)φi ∂Fj
∂ρ

where ρ = u/v and F is a solution to a second-order linear equation depending on a
parameter,J , the Lewis–Ray–Reid invariant.J is an invariant which is independent ofφ1

andφ2. In fact theJij satisfy a quadratic relation analogous to that for the Pinney equation,
namely,

J11J22− J12J21 = J.
Consequently, derivations of these invariants will have coefficients depending on theφi ’s
and will describe the symmetry algebra. They also have aρ dependence determined by
solutions of a second-order linear equation and hence a Liouville extension in functions
of u and v. Some cases are effectively discussed in [4]. It is not clear whether there are
invariants like theIi for the Pinney equation expressed in term of solution pairs(ui, vi).
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5. Conclusions

We have given in this paper a general framework for the discussion of symmetries of quite
general ODEs, at least those defined by analytic forms, and we have illustrated how the
description in terms of derivations over a field of invariants yields symmetries which lie
in field extensions of the base field. This is not a constructive approach but it takes some
of the mystery out of constructive approaches by replacing the question, ‘can we find a
symmetry?’, with the question, ‘how big an extension must we use in order to construct a
symmetry?’. It remains to push the analogy with Galois theory further, that is, to obtain a
correspondence between subfields of the field of invariants and ideals of the full symmetry
algebra.

References

[1] Abraham-Shrauner B 1995 Lie symmetries, hidden symmetries and time-dependent invariantsDynamical
Systems and Applications (World Sci. Ser. Appl. Anal. 4)(River Edge, NJ: World Scientific) pp 1–10

[2] Abraham-Shrauner Bet al 1995J. Phys. A: Math. Gen.28 6707–16
[3] Athorne C 1997J. Phys. A: Math. Gen.30 4639–49
[4] Athorne C 1991J. Phys. A: Math. Gen.24 945–61
[5] Athorne Cet al 1990Phys. Lett.A 143 207
[6] Basarab-Horvath P 1991Ukrainian J. Math.43 1330–7
[7] Edelen D and Wang J 1992Transformation Methods for Nonlinear Partial Differential Equations(Singapore:

World Scientific)
[8] Gonzalez-Gascon F and Gonzalez-Lopez A 1988Synergetics, Order and Chaos (Madrid, 1987)(Teaneck,

NJ: World Scientific) pp 651–4
[9] Gonzalez-Lopez A 1988Phys. Lett.133A 190–4

[10] Gordon T J 1989 On the invariants of Ermakov systemsPreprint Department of Mathematical Sciences,
Loughborough University of Technology, Loughborough

[11] Hartl T and Athorne C 1994J. Phys. A: Math. Gen.27 3463–74
[12] Kaplansky I 1957An Introduction to Differential Algebra(Paris: Hermann)
[13] Olver P J 1986Applications of Lie Groups to Differential Equations(New York: Springer)
[14] Pinney E 1950Proc. Am. Math. Soc.1 681
[15] Ray J R and Reid J L 1979Phys. Lett.71A 317
[16] Stephani H 1989Differential Equations(Cambridge: Cambridge University Press)
[17] Svirshchevskii S R 1995Phys. Lett.A 199 344–8


