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On the Lie symmetry algebra of a general ordinary
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Abstract. We give a description of the Lie symmetry algebra of a general ordinary differential
equation which clarifies certain issues in its practical use. In particular we present examples of
symmetry algebras for well known equations which illustrate features of this algebra.

1. Introduction

In a recent publication [3] a complete description of the Lie symmetry algebra of a linear
ordinary differential equation (ODE) with coefficients in a specified differential base field
was given and this paper will generalize the result to an equation defined by an element of a
differential ring in a single indeterminate over the base field and hence to nonlinear ODEs.
A somewhat different description of the linear case is given in [17]. The generalization
is straightforward in that the algebra is just the ring of derivations of a function space in
certain invariants as, it will be shown, it is in the linear case.

The Lie symmetries of a differential equation are of immense practical help in
understanding the structure of such an equation and in obtaining families of particular
integrals. What we are aiming at is an abstract framework which might be compared with
the differential Galois theory of a linear equation. Indeed, in the case of linear equations
this comparison ought to be a correspondence. We do not therefore advance a practical
tool in obtaining the symmetry algebra, which is in any case tantamount to being able to
solve the equation completely, but to construct an object whose structure is transparent.
By choosing certain classes of object we pin down classes of differential equation whose
structure then becomes equally transparent.

In this paper we give the definition of the (non-characteristic) Lie symmetry algebra
and present the main theorem, which encompasses the earlier result, before giving what we
hope are interesting examples of its application. These are to do with subalgebras whose
coefficients belong to subfields of the full field of invariants.

It must be noted that the non-characteristic Lie algebra is not exactly the same as the
Lie symmetry algebra as defined in, say, [13] and is so-called because certain characteristic
symmetries have been factored out of the latter. Further, the invariants we use are invariants
of the characteristic symmetry. In addition, what we call the Lie symmetry algebra here is
more broadly defined than in [13] where orggint symmetries are intended. Our use is in
accord with others [7, 16]. In defence of the broader definition we point out that when written
in first-order system form (so that each derivative is effectively a new dependent variable) an
ODE has ‘point’ symmetries which transform derivatives in ways which are not necessarily
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prologations of point transformations of the original dependent and independent variables.
Such symmetries are often called generalized, dynamical or BieklBnd symmetries. The
value of this point of view has been amply demonstrated in [9], where examples are given of
families of second-order ODEs possessing no point symmetries but integrable by quadrature
by virtue of dynamical symmetries. In [8] the authors make the point that, for second-order
differential equations, integrability by quadrature is equivalent to the presence of a pair of
dynamical symmetries.

2. Definitions and basic results

In this section we present the foundations of a coordinate-free treatment of generalized,
continuous symmetries for differential systems of finite rank. The classical notion of Lie
point symmetry is extended to give a larger algebra of vector fields (derivations) preserving
the differential system (ideal) under Lie transport. We present results on reduction of order
proved in [3] and use them to give a new result on solvability (theorem 9).

Let k be a differential field of characteristic zero with derivatiyrand field of constants
ko. k[y] is the ring of polynomials ovek in the indeterminatesy, yi, ..., yy With
commuting derivationsd,, d,, ..., dy,. k[y] is an integral domain with fraction field
denotedk(y) to which a,, d,,, ..., d,, extend in the obvious way. For thgy) valued
ko-linear derivations ork(y) we will write Der(k(y)). These aré(y) linear combinations
of the above derivations.

We shall also want to adjoin to a general differential fieldsay, new functiongy, jo, . ..
defined by differential equations whose defining function belongk ta differential field
extension ofk(y). In this way we get differential fieldd (1), J(j1, j») etc. The Picard—
Vessiot extensions [12] are examples of this.

By A (k(y)) we denote thé&(y) valued one-forms dual to Dé&n(y)). A basis is given by
the set{dx, dys, dy,, ..., dyy} where d: |0, = 1, dx[d,, = O for alli and d; |9,, = &;;. (We
use| for the pairing between a vector space and its dual.) The exterior differential algebra
will be denotedA (k(y)) = &) A’ (k(y)) with da = d,a dx + d,,a dyo + d,,a dy, + - - - for
aek(®).

An ideal of A(k(y)) will be an algebra ideal which is also closed under the exterior
derivative d. So ifv andn are elements of the algebra and the ideal respectively,doth
and d; belong to the ideal. We use the notatidn« B when A is an ideal ofB. We will
assume, because of the applications we have in mind, that our ideals are finitely generated
by one-forms. Although the definition of symmetry algebra given below generalizes to
partial differential equations, this restriction excludes most of them.

Let K be a differential field extension @f(y). We consider forms/\(K), over K and
the ko-linear derivations, D&€K) of K. We have the following.

Definition 1. The K -Lie symmetry algebrale (K ), of an ideal® c A (K) is theko-algebra
of vector fieldsX € Der(K) such thatLx® C ©.

The definition uses the Lie derivative with respectdpnamely,Lx6 = d(X[6) + X | do

for any formé. The ideal is preserved by Lie transport along symmetries and hence integral
manifolds are transported into integral manifolds. This is the natural dynamical or geometric
generalization of Lie point symmetry.

Definition 2. The K-characteristic algebratp (K) of ® is the ko-algebra of vector fields
X e Der(K) such thatX |® C O.

It is easily verified that, agp-algebrasXg < Lg.
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Definition 3. The K-non-characteristic symmetry algebig (K), of ® is the ko-algebra
Lo(K)/Xe(K).

In general this algebra will be infinite dimensional ovey but we will see that it is
finite dimensionalas a vector spageover a larger field. In factoring out the characteristic
symmetries we are removing ‘trivial’ symmetries which simply transport each individual
integral manifold into itself.

Definition 4. For K any field extension ok(y), the K-invariants of®, Zg(K) are those
elements: € K such thatX |da = 0 for all X € Xp(K).

From now on we will drop the argument froffy etc except where we wish to emphasize
the particular field in question.

In order to discuss symmetry reduction ® and hence the reduction in order of the
differential system, we need to understand the relations between the full symmedry of
and the symmetries of ideals contained witldn The situation here is not as neat as one
might wish. Nevertheless the following results lead up to the generalizatiSg (&) of a
well known result, theorem 9, a sufficient condition for ‘integrability by quadrature’ up a
tower of differential field inclusions. In what followK is an extension ok(y).

Lemma 5.Assume thatSe is finite-dimensional as & -vector space. If\V is a subalgebra
of Sg, also of finite dimension as & -vector space, then there existskaalgebra ideal
® < ® with non-characteristic symmetry algehfa containing a subalgebra isomorphic to
IZN)/N, Z(N) being the idealizer ofV in Der(K).

The ideal® in this theorem is generated ovkr by one-forms in® killed by elements
of M. In other words, it is the ideal o® for which A/ is characteristic. Recall that the
idealizer of \V is the largest subalgebra of &) containing\ as an ideal.

Definition 6. An ideal is simpleif it is generated by one-forms and itank is r if it is
generated by such forms linearly independent ovet.

Lemma 7.An ideal, ®, of rank one ovelK with a non-characteristic symmetry is generated
by a closed one-form.

Lemma 8.If the single vector field € Sg generates a subalgebha then in the context of
lemma 5,0 /® has a closed generator.

These three lemmas are proved in [3].

Theorem 9Let ® have rankn over K and Sg dimensionn as a vector space oveX.
Suppose further thaSe is solvable with derived series of length Then ® has a
decomposition of length.

Proof. Let S decompose thus:
So=8>81>-->81> 8 = {0}. (1)

For s; € S; let ®; be generated by one-forn®s, 63, ...,6, such thats;|6; = O for

i =2,...,n. Choosed; ¢ ®;. Theno; = (s1161) 7161 is closed modulod,. Further,
because the idealizer &; containsS, we have thatSe, 2 S2/S1 # {0}. Now choose
52 € 87\S1 and letd, be generated by those one-forms, g8y, .., 6, in &1 with 55|16, =0
fori =3,...,n. Thené, = (s2 162) %6, is closed modulod,. This process continues to
generate a chain of the form

{O}I(I),,<ICD,1,1<1-'-<ICI)1<1(‘DOI®. (2)
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In this case we can solve the differential equation by successive quadratures up a tower
of fields in the following manner. The theorem above has reduced the closure relations in
the basiq6, ..., 6,} to upper-triangular form. Consequentlyis closed and we may write
0, = df,, at least locally, for somg, in a large enough extension bfy). Restriction to the
submanifoldf, constant then implies that the restricted fatm; is closed, s@,_; = df,_1
where f,_; is defined on the submanifold, constant and lives in a further extension of
k(y). Restricting tof,, and f,,_1 both constant we repeat the procedure and iterating finally
obtaining a set ofi relations on the variables, y, yi, ..., y,_1 and hence a (local) solution
curve depending on the choice of constants. |

3. The main result

Let U be an open subset @"** and let. A(U) be the differential ring of functions analytic
on U. As a commutative domaind has a field of fractions to which the derivations on
A extend by the quotient rule. We call this tlamalytic field 7(U). Suppose thatd

is an F(U)-algebra ideal of rank everywhere onU. By the Frobenius theorem there
exist n functions, Iy, I, ..., I, € F(U’), for a certain open subséf’ C U, such that
FWUNO1,...,60,) = FUHNI,dl,,...,dI,). The I; are analytic onU’ and the d; are
linearly independent ovefF (U’). Consequently we can solve fgs, ..., y,_1 in terms of
x,Il,...,In,

Yo = CDO()C’ 111"'71}1)

Yn-1 = (Dn—l(xa Ilv ceey In)

where thed; are analytic on some open subs&tof C"*1. This gives us an invertible,
analytic map® : W — U’. ® also induces a map fro(U’) to F(W). Correspondingly
the invertible tangent map, & maps derivations orF(W)(d/ly, ..., dl,) to derivations
on F(U{04,...,0,). The characteristic derivationX, on F(U’){04,...,0,) satisfies
X|6;=0fori=1,...,n. andd®1(X) must satisfy @~1(X)|dl; =0fori =1,...,n.
The latter has to be a multiple éf. Forming the factor algebrde /X in each case we
see thatSg is mapped into the derivations of quotients of functiondin..., I, only, on
w.
Thus we state the following theorem.

Theorem 10If ® is anF(U) ideal of maximal rank everywhere dn then there is an open
U’ C U whereSg(F(U")) is the derivations of an analytic field of invariants.

4. Some illustrations

We illustrate the above with a range of examples.

4.1. Linear first-order ODE

It is often remarked that the symmetries in this instance form an infinite-dimensional Lie

algebra which we describe below. In fact in the general linear case (see below) the
non-characteristic Lie algebra is infinite-dimensional over its field of constants but finitely

generated over the invariants by point symmetries.
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Consider the first-order, linear equation, — ayo = 0, with a € k, and lety, = « be
any non-trivial solution.k{«) = k; is the smallest extension containiag By a formal
calculation it is easy to check that the general form of an elemestob yoF (yo/or)dy,.
Eitherk = k1 or k C k1 andk; is transcendental ovér by lemma 3.9 of [12]. In the latter
caseSe (k(yg)) is one-dimensional ovely and generated bygd,,.

If we take k;, the Liouville extension ok defined by the first-order, linear equation,
we have an infinite set of symmetries. They can be expanded as Laurent segeghose
terms arekg-linear combinations of; = yi+1a‘i8y0 for i € Z. Theses; show thatSg is,
in this case, thég-algebra with Lie product,

[si, 5] = (G — D)siyj (3

4.2. General linear ODE

Let z1, 22, . . ., z, be akg-linearly independent set of solutions to the given linear ODE of
ordern. We takek; to be the Picard—Vessiot extension lofdefined by these functions.
Then then elements ok, (y) defined by the determinants

Z&) . Zi(I)l Yo sz&-)l e Zn
1
230 e Ziy oy Zign e 2P
L= | . . ) ) 4)
(-1 (-1 ’ (=1 1
4 cee Zisg Y1l Zigp e Z Y

are invariants ofXg, that is, d; € ® and Sg(k1(y)) is the kp-algebra of derivations
of the fieldZg = ko(I1, Io, ..., I;,), [3]. This is a particular case of theorem 10. It is
straightforward to verify that th&; (y)-derivations ofZg areZg generated by the vector
fields X; = z;0,, + 20y, +--- + 2" "8, ,.

An interesting observation is the relation between symmetry and factorization of
linear operators. Suppose we are able to factorizenthrorder, linear operatol. =
(0 —a1)(@ —ap)...(@ — a,) over a differential fieldKk. Soa; € K fori = 1,...,n.
The corresponding ide® is generated by one-fornts = du; 1 — (u; +a,+1_;u;_1) dx for
i=1,...,n—1andd, = du,_1 —aju,_1dx. The closure relations of these basis elements
have triangular form:

a, dx dx 0

01 0 a,-1dx dx 01
62 02
dl | = . Al (5)
: ardx  dx :
On 0 ay dx On

By extendingK if necessary we can reduce this to strictly upper-triangular form using, as
integrating factors, the solutions to the equatiens- a,u = 0. Consequently we have a
chain of differential ideals, each describing a linear ODE:

O1>060>--->0,_1>0, =0.
O®; arises as a symmetry reduction ®f, ;.
Suppose, in general, thatis a linear differential operator over a figtdvhich factorizes,

D = PQ, into linear differential operators over a field Then we have a corresponding
sequence of ideals:

@p — @D—> ®D/®P ”"@Q.

The factor ideal is equivalent 1, in the sense that on regular solution manifoldsBgf
it restricts to a linear equation with an inhomogeneous term determined by the solution
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manifold chosen. If we take a symmetry reduction of ttle order operato® by one of
the X; defined above the® is an operator of ordet — 1 and® represents a first-order,
linear equation of the forny; — ayo = f for f € kerP.

4.3. Nonlinear first-order ODE

In this and subsequent sections where examples are drawn from equations of order of no
more than two it is convenient to useinstead ofyy and p instead ofy;. We use primes
for x-derivatives.

We will illustrate this case using the general Ricatti equation because, for an explicit
description of the symmetry algebra, one needs some sort of description of the solution
space. The fact that the Ricatti equation is ‘linearizable’ to a second-order, linear equation,
for which we know the symmetry algebra, is natpriori useful. We shall study the
relationship between the two symmetry algebras in a moment.

Given any three projectively independent solutiaasu, andus to the Riccati equation,

Y =y +akx) (6)
the invariants ink(uq, uz, uz)(y) are all rational functions of the cross ratio

_ (y —u1)(us — uz)
(uz —u)(y —u)’

It is easy to check that any such function is killed by the characteristic field(y2 + a)dy
and, by solving fory in terms ofz that any functionF (x, z) is invariant only if independent
of x. S0J(®) = ko(z). The general element of the non-characteristic symmetry algebra
is thenh(z)(g—i)*la},, that is, any derivation of the field of invariants. (For the appropriate
invariant, z, this formula applies to any first-order equation.)
The existence of a symmetry implies the solution of the Ricatti equation by quadrature.
If we use the symmetry = =00=t25 with 6 = dy — (y + a) dx it follows that the
one-form
0 dy —ujdx dy —u)dx
v]6 y—u1 y—uz
is exact. This does not contradict the classical result on the impossibility of quadrature
for the Ricatti equation because the classical result assumes only algebraic operations over
k(x,y). Indeed, the above is equivalent to the result that the Ricatti equation is integrable
by one quadrature, the rightmost term above, when a pair of particular solutions is known.
To understand the relationship with the symmetry algebra of the corresponding second-
order, linear equation we must proloty= k(y)(dy — (y2 +a) dx) to © = k(y, ¢)(dy —
(y? 4 a) dx, dp + y¢ dx) which describes the second-order equation

¢ +ap =0.

We have to relate the derivations bf(z) to those ofkq(I1, o) where I, and I, are as
described in (4). In terms of and¢ and a pair of linearly independent solutiops and
¢ to the linear, second-order equation, the invaridatand I, are given by

L= —¢(¢5+ y$2)

+ (u2 —ug) dx

and

I = ¢ (¢ + yoa).
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The corresponding derivations are

1+
X1 = 105 — way
¢
and
5+
Xo = ¢ — %T%ay.

Now definex; andu,, solutions to the Ricatti equation, @, = —u1¢1 and¢, = —uz¢.
A third solution to the Ricatti equation is built from these:
Pt oy

o1+ ch
¢ being an arbitrary (even infinite) constant. Rewriting the invariamt terms of¢; and
¢, gives

y3 =

14 +yén
cdy+yp2

Up to a constant this is the ratio &f to I> and soZe, = ko(I1/12) C ko(I1, I2) = Ze. The
relationship between the non-characteristic symmetry algebras thus reduces to the study of
the algebras of derivations of a field and a subfield. Generally speaking a derivation of the
field is not necessarily a derivation of the subfield,vare versa In this case the subfield
is fixed by the special derivatiof X; + I,X, which is to be expected since this is the
symmetry of any linear, second-order equation and the one by whichreduced to®.
Ze is thus playing a role anlagous to an intermediate fixed field in the Galois theory.

4.4. Solvable structures

A solvable structure, introduced in [6] and written in the current form in [11], is a chain of
differential ideals

O=®01>®11>®21>---l>®n_1l>®n=®

with a special choice of one-fornts € ©;\©;_; such that ; € ®;,_;. The structure of

the factorized, linear equation is a simple case. With each i@¢dhere is associated a
symmetry algebrd.e, and a non-characteristic symmetry algelSea. As we have seen
there is no generic relationship between the algebras atihendi — 1th ideals. Although

the inclusion®,_; < ©; can be regarded as coming from a symmetry reduction for some
symmetry inSe,, this need not be a symmetry 6,,,. Examples of solvable structures
will be found in [11]. They account for equations which appear to acquire extra symmetries
under reduction. Examples have been studied in recent literature [1, 2] following an original
example from Olver [13]. They have also been discussed in [11] where it is shown that the
phenomenon of ‘hidden symmetry’ is due to such an extended notion of solvability.

4.5. Some nonlinear ODEs

The value of the above approach to the symmetry theory of ODEs is that it allows us,
in principle, to display clearly the relationship between the existence of integrals within
intermediate field extensions and non-characteristic symmetries within such extensions.

It is appropriate to start with the first-order, inhomogeneous equation

1 4+az+b=0 @)
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wherea andb belong to a differential field. The general solution requires two Liouville
extensions [12]. Thus we can extend the ideal generated by dz + 2(az + b) dx,
k(z)(dz +2(az + b) dx) <k(z){dx, dz), t0 k(n1)(z)(d(z/n1) +2b/n1) <k(n1)(z){dx, dz) by a
Liouville extension using any solutiom to the homogeneous equatigh+ 2an = 0. The
one-form generating the latter ideal is closed but only exaktsf has an integral ik (1)
so, in general, we further extend to the generalized Liouville extensign ¢;) wheres;
is any nonconstant solution to the second-order equation (b'/b + 2a)¢’ = 0.
Alternatively, letz; and z, be any linearly independent solutions of (7). (Note that
because the equation is inhomogeneous, any pair of distinct solutions is linearly independent
over C.) We may take, for instancey = ¢1m1 + n1 andzz = ¢1m1 — 1. Then the general
solution isz = Az1 + (1 — A)z2 and an invariant can be taken to be= (z1 — z2) " (z — z2).
Any other choice forz; and z; induces an affine transformation @t Consequently
v = (z1 — z2)0, = 2110, is a non-characteristic symmetry and the fof(v|0) is the
closed form above.
The Bernoulli equation

y +ay+b/y=0 (8)
reduces to (7) under the quadratic mag: y? and so an invariant is
_ 0=y +y)
(y1—=y2)(y1+y2)
An associated derivation is = (y7 — y3)/yd, or, up to a constanty = n;/yd, for the
reasons given above. So the Bernoulli equation has a symmetry with coefficients in a
Liouville extension ofk and integration proceeds as above.
For a more general Bernoulli equation
Y +ay+by"t=0 9)
one uses the standard reduction to inhomogeneous linear form to obtain the invariant
;- 102 =)
y'(y2 = y1)
and the corresponding derivations generated by

yn _ yn
__ 2 _ nl yn-&-lay'
ny;y,
Here y; and y, are solutions of (9).v generates a Lie point symmetry of (9). In the case
thata is constant (9) is a reduction of the second-order equation,

Y =y Y2 ngo)y"y + g (0)y"

by the symmetry 19, + (y~2p +ng(x)y"~1)d, which is not a Lie point symmetry. In [8]
it is shown that there are no point symmetries for geng(a).

In the case thak is constant solutions of (8) are also solutions of the well known Pinney
equation,

Y +ay+B/y*=0 (10)

wherea = a' — a? and8 = b%. The ideal representing (8) can be seen to be the image of
that representing (10):

(dy + (ay +b/y) dx) = ®*(dy — pdx,dp + (@y + B/y*) dx)
under the restriction, to the submanifolgp + ay + b/y = 0 of C3.
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If y; andy, are solutions of (10) then the following are easily shown to be invariants
belonging to the fieldo(y1, y2)(y, p):

L = (yy; — pyD)? — By?/y? — By?/y?

I = (yyp — py2)? — By3/y? — BY*/ 5.
Elimination of p gives the general solution to (10) in an algebraic extension of the

field ko < y1,y2 >. On the other hand we can also find invariants in the field
ko, < ¢1, 92 > (y, p) Whereg; and¢, are solutions to the linear equation

¢// + Ol¢ — 0
satisfying the Wronskian relatiof¢> — ¢1¢, = 1, namely,
Tij = v, — pd) (yd] — poy) — Beidi/y°

fori, j = 1, 2. These invariants are not algebraically independent. Infadb, — J12J21 =

—pB. The general solution in a quadratic algebraic extensiay@f;, ¢,) gives the familiar

expression [14] for the solution. Consequeri§yp1, ¢,) is at most a subfield dfy(y1, y2).
As a result the Pinney equation has non-characteristic symmetries,

vi = 2(pi — y)) (@i + ¢/9,) — 2B¢7/¥d,
for i = 1, 2 with coefficients ink(¢1, ¢-)(y, p) and

U = 2(pyi — yy)idy + ¥[9p) — 2B(67/y° = y/¥P)dp

for i = 1, 2 with coefficients ink{y1, y2)(y, p).
The classical Ermakov systems [15] have the form,

u +au+u?vf(v/u)=0

11
v 4+ av + v %u"tg(u/v) = 0. (1D

These systems admit exact but implicit linearization [5] which, as in the case of the Pinney
equation, makes use of the field extensieng:, ¢2) where ¢ + a¢p1 = 0. Invariants

of the kind we seek were first constructed in an unpublished paper of Gordon [10] and
subsequently by using the linearization [4]. Using-d p dx and d — ¢ dx to describe the
contact forms, they are of the form,

1 IF;
Jij = (9iq — $iv) Fj(p) + v " (vp — uq)dh'%

where p = u/v and F is a solution to a second-order linear equation depending on a
parameter,/, the Lewis—Ray—Reid invariant! is an invariant which is independent ¢f
and¢,. In fact theJ;; satisfy a quadratic relation analogous to that for the Pinney equation,
namely,

Jirdoo — JipJor = J.

Consequently, derivations of these invariants will have coefficients depending @n'she
and will describe the symmetry algebra. They also haye dependence determined by
solutions of a second-order linear equation and hence a Liouville extension in functions
of u andv. Some cases are effectively discussed in [4]. It is not clear whether there are
invariants like thel; for the Pinney equation expressed in term of solution p@irsv;).
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5. Conclusions

We have given in this paper a general framework for the discussion of symmetries of quite
general ODEs, at least those defined by analytic forms, and we have illustrated how the
description in terms of derivations over a field of invariants yields symmetries which lie
in field extensions of the base field. This is not a constructive approach but it takes some
of the mystery out of constructive approaches by replacing the question, ‘can we find a
symmetry?’, with the question, ‘how big an extension must we use in order to construct a
symmetry?’. It remains to push the analogy with Galois theory further, that is, to obtain a
correspondence between subfields of the field of invariants and ideals of the full symmetry
algebra.
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